--- summary: Gr00t model links, training, and evaluation steps tags: [models, gr00t] updated: 2025-08-21 audience: [dev] --- # 🤖 Gr00t - [blog](https://huggingface.co/blog/nvidia/gr00t-n1-5-so101-tuning) - [model](https://huggingface.co/nvidia/GR00T-N1.5-3B) - [repo](https://github.com/NVIDIA/Isaac-GR00T) - [tatbot fork](https://github.com/hu-po/Isaac-GR00T) ## ⚡ Train instructions for `oop` ```bash # basic install git clone --depth 1 https://github.com/hu-po/Isaac-GR00T.git && \ cd Isaac-GR00T/ # setup uv venv uv venv --python=3.11 && \ source .venv/bin/activate && \ uv pip install .[base] # download dataset locally export DATASET_DIR="/home/oop/tatbot/output/train/tatbot-calib-test/dataset" && \ huggingface-cli download \ --repo-type dataset tatbot/tatbot-calib-test \ --local-dir $DATASET_DIR # copy modality config file cp /home/oop/tatbot/config/gr00t_modality.json $DATASET_DIR/meta/modality.json # load dataset python scripts/load_dataset.py \ --dataset-path $DATASET_DIR \ --embodiment-tag new_embodiment \ --plot-state-action \ --steps 64 \ --video-backend torchvision_av # train with docker docker build -f Dockerfile -t gr00t-train . docker run -it --gpus all --shm-size=8g --rm \ -e WANDB_RUN_ID="gr00t-test" \ -e WANDB_PROJECT="tatbot-calib" \ -v $DATASET_DIR:/dataset \ -v $HF_HOME:/root/.cache/huggingface \ -v /home/oop/tatbot/output/train/tatbot-calib-test/gr00t:/output \ -v /home/oop/Isaac-GR00T:/workspace \ gr00t-train \ bash -c "pip install -e . --no-deps && \ python scripts/gr00t_finetune.py \ --dataset-path /dataset \ --embodiment-tag new_embodiment \ --num-gpus 1 \ --output-dir /output \ --max-steps 10000 \ --data-config tatbot \ --batch_size 1 \ --video-backend torchvision_av" ``` ## 🖥️ Eval instructions for `ojo`, acting as the policy server ```bash # basic install git clone https://github.com/hu-po/Isaac-GR00T.git && \ cd Isaac-GR00T/ # copy policy checkpoint into ojo scp oop@192.168.1.53:/home/oop/tatbot/output/train/tatbot-calib-test/gr00t /tmp/gr00t # policy with dockerfile docker build -f orin.Dockerfile -t gr00t-eval . docker run -it --gpus all --rm \ -v /tmp/gr00t:/checkpoint \ -v /home/ojo/Isaac-GR00T:/workspace \ gr00t-eval \ bash -c "pip3 install .[orin] && \ python scripts/inference_service.py --server \ --model_path /checkpoint \ --embodiment-tag new_embodiment \ --data-config tatbot \ --denoising-steps 4" ``` instructions for `eek` acting as the robot client ```bash git clone https://github.com/hu-po/Isaac-GR00T.git && \ cd Isaac-GR00T/ # setup uv venv uv venv --python=3.11 && \ source .venv/bin/activate && \ uv pip install .[base] # run robot client python getting_started/examples/eval_lerobot.py \ --robot.type=tatbot \ --policy_host=192.168.1.96 \ --lang_instruction="move slightly upwards in z" ```